Ciencias
Video: Científicos japoneses diseñan un 'nanotraje' para larvas
Científicos japoneses han desarrollado un 'nanotraje' que protege a las larvas de insectos de los efectos del vacío en el microscopio electrónico. El método se describe en un artículo en la revista oficial de la Academia Nacional de Ciencias PNAS.
El invento de un grupo de científicos dirigido por Takahiko Hariyamy fue bautizado como 'nanoescafandra'. Los investigadores inventaron un recubrimiento ultradelgado para las larvas de insectos que permite evitar su deshidratación en un vacío, reproduciendo las condiciones del espacio abierto.
La muerte de las larvas en el vacío es el principal obstáculo en el proceso de un estudio detallado realizado con el uso de microscopios electrónicos. El dispositivo requiere una ausencia completa de aire en la cámara con la muestra de ensayo, porque los átomos de gas impiden el libre flujo de electrones a través de este tipo de microscopio, que escanean el objeto.
Hariyama considera los estudios convencionales de las larvas por medio de este tipo de microscopios como experimentos "muy tristes ", ya que los insectos mueren rápidamente por deshidratación. Sin embargo, en el curso de un experimento de este tipo, los científicos comprobaron que en el caso concreto de las larvas de moscas Drosophila que eran irradiadas inmediatamente después de haber sido colocadas en el microscopio electrónico, estas continuaban moviéndose durante una hora.
Un examen detallado de las larvas mostró que el flujo de electrones causaba la compactación de las moléculas de la membrana que cubre la piel de los embriones de las moscas. El revestimiento producido, de un espesor de entre 50 y 100 nanómetros, evita la evaporación del agua sin impedir que la larva se mueva y mantiene su integridad bajo contacto mecánico con objetos duros.
Para garantizar la protección de los insectos cuyas larvas no tienen la capacidad de generar esa membrana, los científicos los sumergen en una composición química especial antes de la irradiación. Como resultado, el microscopio electrónico es capaz de estudiar las larvas de mosquitos, gusanos planos, hormigas y pulgas vivas durante más tiempo.
La muerte de las larvas en el vacío es el principal obstáculo en el proceso de un estudio detallado realizado con el uso de microscopios electrónicos. El dispositivo requiere una ausencia completa de aire en la cámara con la muestra de ensayo, porque los átomos de gas impiden el libre flujo de electrones a través de este tipo de microscopio, que escanean el objeto.
Hariyama considera los estudios convencionales de las larvas por medio de este tipo de microscopios como experimentos "muy tristes ", ya que los insectos mueren rápidamente por deshidratación. Sin embargo, en el curso de un experimento de este tipo, los científicos comprobaron que en el caso concreto de las larvas de moscas Drosophila que eran irradiadas inmediatamente después de haber sido colocadas en el microscopio electrónico, estas continuaban moviéndose durante una hora.
Un examen detallado de las larvas mostró que el flujo de electrones causaba la compactación de las moléculas de la membrana que cubre la piel de los embriones de las moscas. El revestimiento producido, de un espesor de entre 50 y 100 nanómetros, evita la evaporación del agua sin impedir que la larva se mueva y mantiene su integridad bajo contacto mecánico con objetos duros.
Para garantizar la protección de los insectos cuyas larvas no tienen la capacidad de generar esa membrana, los científicos los sumergen en una composición química especial antes de la irradiación. Como resultado, el microscopio electrónico es capaz de estudiar las larvas de mosquitos, gusanos planos, hormigas y pulgas vivas durante más tiempo.
comentarios